CHLOEPEDIA-- Label,penelusuran,tag,hasil,result,hasil
penelusuran.hasil result : LEUCISM , LEUCISTIC , LEUCISTIK , (part 4)
.........................................................
LEUCISM , LEUCISTIC , LEUCISTIK
............................................................
Label,penelusuran,tag,hasil,result,hasil penelusuran.hasil
result,search,result.search result :
L,leucism,leucistic.leucistik,t-rec,tugumuda reptiles
community,kse,komunitas satwa eksotik,sahabat si komo,chloe ardella raisya
putri kamarsyah,prianka putri,aldhika budi pradana,semarang
............................................................
Label,penelusuran,tag,hasil,result,hasil penelusuran.hasil
result ,search,result.search result :
Leucism,leucistic,leucistik.hewan leucistic,hewan
leucism,hewan leucistik,binatang leucistic,binatang leucism,binatang
leucistik,mamalia leucistic,mamalia leucism,mamalia leucistik,satwa
leucistic,satwa leucistik,satwa leucism,burung leucistic,burung leucism,burung
leucistik,reptil leucistic,reptil leucistik,reptil leucism,ular leucistic,ular
leucism,ular leucistik ,Herpetofauna, herpetology, biodiversity,keanekaragaman
hayati,flora,fauna,konservasi,habitat,komunitas,reptil,satwa.t-rec,tugumuda
reptiles community,kse,komunitas satwa eksotik,sahabat si komo,on line,chloe
ardella raisya putri kamarsyah,priankaputri,aldhika budi pradanam,semarang
................................................................
Hanya
berusaha merangkum segala sesuatu yang berhubungan dengan
leucistic,leucism,leucistik dari sumber
sumber yang ada di pencarian google search , semoga dapat membantu dan
bermanfaat
Just trying to summarize everything connected with leucistic,leucism,leucistik from existing sources in the google search engine, may be helpful and useful
.................................................................
BERMANFAAT UNTUK ANDA
?????....BANTU KAMI DENGAN BER DONASI UNTUK KELANGSUNGAN CHLOEPEDIA ATAU
MENJADI VOLUNTEER UNTUK KAMI...(+62)85866178866 ( whatsapp only )
Leucistic or leucism
..........................................
Link chloepedia :
Herpetofauna 1
herpetofauna 2
herpetologi 1
herpetologi 2
herpetologi 3
herpetologi 4
herpetologi 5
herpetologi 6
amelanistic-amelanistik-amel-amelanism-1
amelanistic-amelanistik-amel-amelanism-2
metode penelitian herpetofauna-1
metode penelitian herpetofauna-2
metode penelitian herpetofauna-3
metode penelitian herpetofauna-4
leucistic-1
leucistic-2
leucistic-3
....................................................................
Leucism (/ˈljuːkɪzəm/;[1] or /ˈluːsɪzəm/[2][3]) is a
condition in which there is partial loss of pigmentation in an animal resulting in white, pale, or
patchy coloration of the skin, hair, feathers, scales or cuticle, but not the
eyes.[1] Unlike albinism, it is caused by a reduction in
multiple types of pigment, not just melanin. Leucism;leucistic/leucistik
(/ ljuːkɪzəm /; [1] atau / luːsɪzəm /
[2] [3]) adalah suatu kondisi di mana ada hilangnya sebagian dari pigmentasi
pada hewan yang menghasilkan warna putih, pucat, atau warna tambal sulam dari
kulit, rambut, bulu , sisik atau kutikula, tetapi tidak pada mata. [1] Tidak seperti albinisme, hal itu
disebabkan oleh penurunan beberapa jenis pigmen, bukan hanya melanin.
Leucism (occasionally spelled leukism)
is a general term for the phenotype resulting from defects in pigment celldifferentiation and/or migration from
the neural crest to skin, hair, or feathers during development. This results in either the entire
surface (if all pigment cells fail to develop) or patches of body surface (if
only a subset are defective) having a lack of cells capable of making pigment. Leucism/leucistic/leucistik (kadang-kadang
dieja leukism) adalah istilah umum untuk fenotipe yang dihasilkan dari
kerusakan cell differentiation pigmen dan / atau migrasi dari puncak saraf pada
kulit, rambut, atau bulu selama pengembangan. Hal ini menyebabkan baik seluruh
permukaan (jika semua sel pigmen gagal berkembang ) atau patch dari permukaan
tubuh (jika hanya subset atau cacat) menyebabkan
sel kurang mampu membuat pigmen.
Since all pigment cell-types differentiate from the same multipotent precursor cell-type, leucism can cause
the reduction in all types of pigment. This is in contrast to albinism, for which leucism is often mistaken.
Albinism results in the reduction ofmelanin production only, though the melanocyte (or melanophore) is still present. Thus in species
that have other pigment cell-types, for example xanthophores, albinos are not entirely white, but
instead display a pale yellow colour. Karena semua pigmen jenis-sel membedakan dari
multipoten prekursor sel-jenis yang sama, leucism dapat menyebabkan pengurangan
semua jenis pigmen. Hal ini berbeda dengan albinisme, yang menyebabkan leucism/leucistic/leucistik sering dianggap keliru. Hasil albinisme dalam pengurangan melanin
produksi saja, meskipun melanosit (atau melanophore) masih ada. Jadi dalam
spesies yang memiliki pigmen sel-jenis lainnya, misalnya xanthophores, albino
tidak sepenuhnya putih, melainkan menampilkan warna kuning pucat.
More common than a complete absence of pigment cells is localized or
incomplete hypopigmentation, resulting in irregular patches of
white on an animal that otherwise has normal colouring and patterning. This
partial leucism is known as a "pied" or "piebald" effect; and the ratio of white
to normal-coloured skin can vary considerably not only between generations, but
between different offspring from the same parents, and even between members of
the same litter. This is notable in horses,cows, cats, dogs,
the urban crow[4] and the ball python[5] but is also found in many other
species. Lebih
umum dari sel pigmen tidak lengkap
terlokalisir atau hipopigmentasi tidak lengkap, sehingga patch teratur warna putih
pada hewan yang dinyatakan memiliki pewarnaan yang normal dan pola. leucism
parsial ini dikenal sebagai "pied" atau efek
"belang-belang"; dan rasio putih untuk kulit normal berwarna dapat
bervariasi tidak hanya antar generasi, tetapi antara keturunan yang berbeda
dari orang tua yang sama, dan bahkan antara anggota dari keturunan yang
sama. Hal ini penting pada kuda, sapi,
kucing, anjing, burung gagak urban[4] dan ball python [5] tetapi juga ditemukan
pada banyak spesies lainnya.
A further difference between albinism and leucism is in eye colour. Due to the lack of melanin production
in both the retinalpigmented epithelium (RPE) and iris, those affected by albinism typically have red eyes due
to the underlying blood vessels showing through. In contrast, most leucistic
animals have normally coloured eyes. This is because the melanocytes of the RPE
are not derived from the neural crest, instead an outpouching of the neural tube generates the optic cup which, in turn, forms the retina. As these cells are from an
independent developmental origin, they are typically unaffected by the genetic
cause of leucism.
Perbedaan lainnya antara albinisme dan leucism dalam warna mata. Karena kurangnya produksi melanin di kedua epitel retinalpigmented (RPE) dan iris, mereka yang terkena albinisme biasanya memiliki mata merah karena pembuluh darah yang mendasari nya . Sebaliknya, sebagian besar hewan leucistic biasanya berwarna mata seperti biasanya . Hal ini karena melanosit dari RPE tidak berasal dari neural crest, bukan sebuah outpouching dari tabung saraf yang menghasilkan cangkir optik yang, pada gilirannya, membentuk retina. Sepertinya sel-sel ini dari asal perkembangan independen, mereka biasanya tidak terpengaruh oleh penyebab genetik leucism/leucistic/leucistik.
Gen itu, ketika bermutasi, dapat menyebabkan leucism/leucistic/leucistik termasuk, c-kit, [6] MITF [7] dan EDNRB. [8]
..........................
Leucism/leucistic/leucistik
In leucistic birds, affected plumage lacks melanin
pigment due to the cells responsible for melanin production being absent. This
results in a white feathers, unless the normal plumage colour also comprises
carotenoids (e.g. yellows), which remain unaffected by the condition. Although
leucism is inherited, the extent and positioning of the white colouration can
vary between adults and their young, and can also skip generations if leucistic
genes are recessive. Pada burung leucistic/lucistic/leucistik, bulu yang terkena
kekurangan pigmen melanin karena sel-sel yang bertanggung jawab untuk produksi melanin
absen/hilang . Hal ini menghasilkan bulu putih, kecuali warna bulu yang normal
juga terdiri karotenoid (mis kuning), yang tetap tidak terpengaruh oleh kondisi
tersebut. Meskipun leucism diwariskan, tingkat dan posisi dari warna putih
dapat bervariasi antara dewasa dan anak-anak mereka, dan juga dapat melewati generasi
jika gen leucistic adalah resesif.
.......................
Leucisim
is often mistaken for albinism, but they are two very different conditions. So
next time you see an animal you think is albino, look to see if it is only
mostly white and, importantly, take a look at the eyes. Leucisim/leucistic/leucistik sering keliru
untuk albinisme, tetapi mereka adalah dua kondisi yang sangat berbeda. Jadi
lain kali Anda melihat binatang Anda berpikir adalah albino, lihat apakah itu
hanya sebagian besar putih dan yang penting, lihatlah matanya.
.............................
Leucism, or leukism, is an abnormal plumage condition caused by a genetic mutation that prevents pigment, particularly melanin, from being properly deposited on a bird’s feathers. As a result, the birds do not have the normal, classic plumage colors listed in field guides, and instead the plumage have several color changes, including: Leucism/leucistic/leucistik, atau leukism, adalah kondisi bulu abnormal yang disebabkan oleh mutasi genetik yang mencegah pigmen, terutama melanin, dari biasanya diendapkan pada bulu burung. Akibatnya, burung tidak normal, warna bulu klasik yang tercantum dalam panduan lapangan, dan bukannya bulu yang memiliki beberapa perubahan warna, termasuk:
·
White patches where the bird should not have any
·
Paler overall plumage that looks faint, diluted or bleached
·
Overall white plumage with little or no color discernable
The degree of leucism, including the brightness of the white and the
extent of pigment loss, will vary depending on the bird’s genetic makeup. Birds
that show only white patches or sections of leucistic feathers – often in
symmetrical patterns – are often called pied or piebald birds, while birds with fully
white plumage are referred to as leucistic birds.
• Bercak putih di mana burung tidak senya harus memilikinya
• Paler bulu keseluruhan yang terlihat samar, diencerkan atau dikelantang
• Secara keseluruhan bulu putih dengan sedikit atau tanpa warna discernable
Tingkat leucism, termasuk kecerahan putih dan besarnya kehilangan pigmen, akan bervariasi tergantung pada genetik burung. Burung yang menunjukkan patch hanya putih atau bagian dari bulu leucistic - sering dalam pola simetris - sering disebut burung pied atau belang, sementara burung dengan bulu sepenuhnya putih disebut burung sebagai leucistic/leucism/leucistik.
How to Identify Leucistic
Birds
While
leucistic birds will show irregular plumage coloration, it is still possible to
identify the birds easily. Many birds with leucism still show a faint wash of
color in recognizable patterns on their feathers, even though the color may not
be as strong as would be typical. Of course, piebald leucistic birds still show
other colors and only have patches of white feathers, but their plumage can
easily be used for identification aside from those feathers.
Cara Mengidentifikasi Leucistic Birds
Sementara burung leucistic/leucistik/leucism akan menunjukkan warna bulu tidak teratur , masih mungkin untuk mengidentifikasi burung dengan mudah. Banyak burung dengan leucism masih menunjukkan sapuan samar warna dalam pola yang dikenali pada bulu mereka, meskipun warna mungkin tidak sekuat sebagai tipikal . Tentu saja, burung belang leucistic masih menunjukkan warna lain dan hanya memiliki patch dari bulu putih, tapi bulu mereka dapat dengan mudah digunakan untuk identifikasi
...........................
Leucism and Albinism in Birds
The ornithological literature is quite
confusing regarding definitions of leucism and various states of albinism.
Whereas recent ornithological texts define albinism (e.g., Welty and Baptista
1988, Gill 1990, Clark 2001), none refers specifically to leucism. Thomson
(1964) states that leucism “results from varying degrees of dilution of normal
pigmentation.”
Leucism dan Albinisme di Burung
Literatur ornitologi cukup membingungkan mengenai definisi leucism/leucistic/leucistik dan berbagai state dari albinisme. Sedangkan teks ornitologi baru-baru ini mendefinisikan albinisme (misalnya, Welty dan Baptista 1988, Gill 1990, Clark 2001), tidak mengacu khusus untuk leucism. Thomson (1964) menyatakan bahwa leucism "hasil dari berbagai tingkat pengenceran pigmentasi normal."
In a review of albinism in British
birds, Sage (1962) referred to leucistic individuals “in which the normal
pattern and colour of the plumage is discernable but very pale or washed out in
appearance” and (citing Hutt 1949) distinguished this dilution of all pigments
from albinism, which affects melanin but not necessarily the carotenoid
pigments. Lucas and Stettenheim (1972) point out that a genetically complete
albino could still have highly colored feathers if a pigment other than melanin
were present.
Dalam review albinisme pada burung Inggris, Sage (1962) sebutkan individu leucistic/leucism/leucistik "di mana pola normal dan warna bulu yang discernable tapi sangat pucat atau wash dalam penampilan" dan (mengutip Hutt 1949) dibedakan pengenceran semua pigmen dari albinisme, yang mempengaruhi melanin tetapi belum tentu pigmen karotenoid. Lucas dan Stettenheim (1972) menunjukkan bahwa genetik albino lengkap masih masih sangat berwarna pada bulu jika pigmen selain melanin juga hadir.
According to these authors, leucism is
caused not by a lack of pigment, but by a reduced deposition of pigment in the
feathers. Several of these references refer further to partial albinism as the
lack of melanin from part of the plumage, either symmetrically or
asymmetrically (Gross 1965, Lucas and Stettenheim 1972, Clark 2001).
Menurut para penulis ini, leucism/leucistic/leucistik tidak disebabkan oleh kurangnya pigmen, tetapi oleh deposisi berkurangnya pigmen di bulu. Beberapa referensi ini merujuk lebih lanjut untuk albinisme parsial sebagai kurangnya melanin dari bagian bulu, baik secara simetris atau asimetris (Gross 1965, Lucas dan Stettenheim 1972, Clark 2001).
Harrison (1963) made a different
distinction, stating that leucistic individuals have melanin in the body,
giving dark eyes and colored soft parts, but the melanin does not enter the
feather structure and the plumage is white, whereas albinistic individuals lack
melanin in the body as well as the plumage.
Harrison
(1963) membuat perbedaan yang berbeda, yang menyatakan bahwa individu
leucistic/leucism/leucistik memiliki melanin dalam tubuh, memberikan mata gelap
dan berwarna di bagian lembut, tapi melanin tidak masuk struktur bulu dan bulu
berwarna putih, sedangkan individu albinistic kekurangan melanin dalam tubuh
serta bulu tersebut.
Other recent authors follow this
“all-or-none” definition of albinism and believe that a bird with any amount of
abnormal white in the plumage, but with dark eyes, would be leucistic (e.g.
Jehl 1985, Cooke and Buckley 1987, Lawrence 1989).
penulis lainnya mengikuti "semua-atau-tidak"dari definisi albinisme dan percaya bahwa burung dengan jumlah putih yang abnormal dalam bulu, tapi dengan mata gelap, akan leucistic/leucism/leucistik (misalnya Jehl 1985, Cooke dan Buckley tahun 1987, Lawrence 1989 ).
..................................
The different
types of albinism all have to do with the body’s inability to produce melanin,
leading to white, gray, or cream-colored hair and skin (but not necessarily red
eyes). Leucism occurs when color pigments are produced in a lower amount than
normal, and normal skin, fur, or feather patterns and textures remain. Berbagai jenis albinisme semua harus dilakukan
dengan ketidakmampuan tubuh untuk memproduksi melanin, menyebabkan rambut
putih, abu-abu, atau berwarna krim dan
kulit (tapi mata tidak selalu merah). Leucism/leucistic/leucistik terjadi ketika pigmen warna diproduksi dalam
jumlah yang lebih rendah dari normal, dan kulit, bulu, atau pola bulu normal
dan tekstur tetap.
Isabellinism
happens when normally dark-pigmented areas develop as a sort of washed-out
grayish-yellow, and it’s supposedly named for an archduchess who refused to
remove her underwear for three years.
Isabellinism terjadi ketika daerah yang biasanya berpigmen gelap berkembang sebagai semacam wash-out kuning keabu-abuan
Isabellinism terjadi ketika daerah yang biasanya berpigmen gelap berkembang sebagai semacam wash-out kuning keabu-abuan
..........................
Leucistic
individuals produce melanin as normal, but the deposition of the pigments is
affected - so eye and bill/leg colours tends to be unaffected, but the colour
of feathers (or hair) can be. individu Leucistic/leucism/leucistik memproduksi melanin seperti biasa, tapi
pengendapan pigmen mempengaruhi - sehingga mata dan warna bill / kaki cenderung
tidak terpengaruh, tapi warna bulu (atau rambut) bisa.
...............................
Leucism is a rare genetic
mutation where two recessive genes produce a white phenotype or pale
appearance. Leucism/leucistik/leucistic adalah mutasi genetik yang langka di mana dua
gen resesif menghasilkan fenotipe putih atau penampilan pucat.
Albinism: occurs when the body does
not possess any pigmentation. It’s characterised by pink eyes.
Leucism: Is the result of an recessive
allele that causes a reduction in pigmentation. Leucism affects all types
of pigmentations in the body.
Albinisme: terjadi ketika tubuh tidak memiliki
pigmentasi apapun. Ini ditandai dengan mata merah muda.
Leucism/leucistic/leucistik : Apakah hasil dari
alel resesif yang menyebabkan penurunan pigmentasi. Leucism mempengaruhi semua
jenis pigmentasi dalam tubuh.
...........................
Leucism is a
condition in which there is partial loss of pigmentation in an animal resulting
in white, pale, or patchy coloration of the skin, hair, feathers, scales or
cuticle, but not the eyes. Unlike albinism, it is caused by a reduction in
multiple types of pigment, not just melanin.[1]
Leucism/leucistic/leucistik adalah suatu kondisi di mana ada hilangnya sebagian dari pigmentasi pada hewan menghasilkan putih, pucat, atau tambal sulam warna kulit, rambut, bulu, sisik atau kutikula, tetapi tidak pada mata. Tidak seperti albinisme, hal itu disebabkan oleh penurunan beberapa jenis pigmen, bukan hanya melanin. [1]
Leucism/leucistic/leucistik adalah suatu kondisi di mana ada hilangnya sebagian dari pigmentasi pada hewan menghasilkan putih, pucat, atau tambal sulam warna kulit, rambut, bulu, sisik atau kutikula, tetapi tidak pada mata. Tidak seperti albinisme, hal itu disebabkan oleh penurunan beberapa jenis pigmen, bukan hanya melanin. [1]
Leucistic Owls
.........................
Leucism is a genetic mutation that prevents melanin and
other pigments from being deposited normally on feathers, resulting in pale or
muted colors on the entire bird.
Leucism/leucistic/leucistik adalah mutasi genetik yang mencegah melanin dan pigmen lainnya disimpan biasanya pada bulu, sehingga warna pucat atau diredam pada seluruh burung.
In this case
the bird would be considered leucistic because the mutation only applies to
depositing melanin in the feathers, not the absence of melanin in the body. Dalam hal ini burung akan dianggap leucistic /leucism/leucistik
karena mutasi hanya berlaku untuk melanin dalam bulu, tidak adanya melanin
dalam tubuh.
...............................
- Leucism is also a genetic mutation.
Leucistic birds have dilute, paler/ whitish plumage overall. A faint
pattern may be visible. Leucism is also uncommon, but is more common that
albinism.
· Leucism/leucistic/leucistik juga mutasi genetik. burung Leucistic memiliki bulu bwerwarna encer, pucat / keputihan secara keseluruhan. Pola samar dapat terlihat. Leucism juga jarang, tetapi lebih sering terjadi pada albinisme .
..............................
Leucistic snakes have no
melanophores (dark pigment cells), no xanthophores (yellow pigment cells) and
only very limited amounts of iridophores (reflective pigment cells) this is why
their skin appears white. The eyes get there colour from cells that migrate
from the neural tube and not the neural crest (where the body colour cells
migrates from). It is because of this independent developmental origin that the
eyes are typically unaffected by the genetic cause of Leucism.
ular Leucistic/leucism/leucistik tidak memiliki melanophores (sel pigmen gelap), tidak ada xanthophores (sel pigmen kuning) dan hanya jumlah yang sangat terbatas dari iridophores (sel pigmen reflektif) ini mengapa kulit mereka tampak putih. Warna Mata dari sel-sel yang bermigrasi dari tabung saraf dan tidak neural crest (di mana sel-sel warna tubuh bermigrasi dari). Hal ini karena asal perkembangan independen hingga mata biasanya tidak terpengaruh oleh penyebab genetik leucism.
...............................
Leucistic
Reptiles
- Medically defined this is a defect
in the skin, not the pigment cells. Classical leucism is caused by a
faulty gene, or set of genes, that causes the skin to be unable to support
pigment cells
- Leucicism is a naturally occurring
pigmentation morph. True leucisticanimals are completely white without any
hint of patterning or pigmentation. They also have blue eyes,
whereas Albino animals will have red eyes
- White animals are still able to be
produced by mixing several morphs that remove different color
pigmentation. If you remove the yellow, red, and black, you will end up
with the white appearance as well. Patternless morphs will improve the
“white” appearance of the animal so you can get nearly as pure white as a
true leucistic, but they will have black eyes
· Secara medis didefinisikan ini adalah cacat pada kulit, tidak pada sel-sel pigmen. leucism klasik disebabkan oleh gen yang rusak, atau set gen, yang menyebabkan kulit menjadi tidak dapat mendukung sel pigmen
· • Leucicism/leucistic/leucistik adalah pigmentasi morph alami. Leucistic animals benar-benar putih tanpa petunjuk dari pola atau pigmentasi. Mereka juga memiliki mata biru, sedangkan hewan Albino akan memiliki mata merah
· • hewan Putih masih bisa diproduksi dengan mencampur beberapa morphs yang menghapus pigmentasi warna yang berbeda. Jika Anda menghapus kuning, merah, dan hitam, Anda akan berakhir dengan penampilan putih juga. morphs berpola akan meningkatkan penampilan "putih" hewan sehingga Anda bisa mendapatkan hampir putih bersih sebagai benar benar leucistic , tetapi mereka akan memiliki mata hitam
...................................
Leucicism is a naturally
occuring pigmentation morph. True leucistic animals are completely white
without any hint of patterning or pigmentation. They also have blue eyes. So it
will always mean white with blue eyes.
Leucicism/leucistic/leucistik adalah pigmentasi morph yang terjadi secara alami. hewan leucistic benar-benar putih tanpa petunjuk dari pola atau pigmentasi. Mereka juga memiliki mata biru. Sehingga akan selalu berarti putih dengan mata biru. In some species (especially lizards) true leucistic genes have not yet been discovered. White animals are still able to be produced by mixing several morphs that remove different color pigmentations. If you remove the yellow, red, and black, you will end up with the white appearance as well. Patternless morphs will improve the "white" appearance of the animal so you can get nearly as pure white as a true leucistic.
Dalam beberapa spesies (terutama kadal) gen yang benar benar leucistic/leucism/leucistik belum ditemukan. hewan putih masih bisa diproduksi dengan mencampur beberapa morphs yang menghapus pigmentasi warna yang berbeda. Jika Anda menghapus kuning, merah, dan hitam, Anda akan berakhir dengan penampilan putih juga. morphs berpola akan meningkatkan penampilan "putih" hewan sehingga Anda bisa mendapatkan hampir putih bersih sebagai benar benar leucistic.
In bearded dragons the true leucicism has not yet been discovered (as far as I know). There are "white" bearded dragons that have been dubbed leucistic but these are not really true leucistic. You can tell by the lack of blue eyes. But although the "leucistic" animals sold are fake leucistics, they are still beautiful and white. The same is true for "leucistic" leopard geckos.
Dalam bearded dragon yang benar benar leucicism/leucistic/leucistik belum ditemukan (sejauh yang saya tahu). Ada bearded dragon "putih" yang telah dijuluki leucistic tetapi ini tidak benar benar leucistic. Anda dapat tahu oleh kurangnya mata biru. Tapi meskipun hewan "leucistic" yang dijual adalah leucistics palsu, mereka masih cantik dan putih. Hal yang sama berlaku untuk leopard gecko "leucistic".
True leucicism is much more common in snakes. Leucicism has been discovered in texas rat snakes and more recently in ball pythons as well as some other species.
Yang benar Benar leucicism/leucistic/leucistik jauh lebih umum di ular. Leucicism telah ditemukan di ular tikus texas dan di ball serta beberapa spesies lainnya.
https://answers.yahoo.com/question/index?qid=20090709193837AACcLUF
...................................
Leucism is a condition in which pigmentation is reduced but not
entirely absent, as in albinism.
Leucism/leucistic/leucistik adalah suatu kondisi di mana pigmentasi berkurang tapi tidak sepenuhnya absen/hilang, seperti di albinisme
Leucism/leucistic/leucistik adalah suatu kondisi di mana pigmentasi berkurang tapi tidak sepenuhnya absen/hilang, seperti di albinisme
.........................................
2)LEUKISM
(LEUCISM)- medically defined this is a defect in the skin, not the pigment
cells. There are other derangements of pigment that can cause a whitening
effect, but they are not classical leukism. Classical leukism is caused by a
faulty gene, or set of genes, that causes the skin to be unable to support
pigment cells.
2) LEUKISM (leucism) /leocistic/leucistik – definisi medis ini adalah cacat pada kulit, tidak di sel-sel pigmen. Ada derangements lain dari pigmen yang dapat menyebabkan efek pemutihan, tetapi mereka tidak leukism klasik. leukism klasik disebabkan oleh gen yang rusak, atau set gen, yang menyebabkan kulit menjadi tidak dapat mendukung sel pigmen.
2) LEUKISM (leucism) /leocistic/leucistik – definisi medis ini adalah cacat pada kulit, tidak di sel-sel pigmen. Ada derangements lain dari pigmen yang dapat menyebabkan efek pemutihan, tetapi mereka tidak leukism klasik. leukism klasik disebabkan oleh gen yang rusak, atau set gen, yang menyebabkan kulit menjadi tidak dapat mendukung sel pigmen.
...............................
Leucistic
Berbeda dengan albino yang kekurangan pigmen melanin, leucistic adalah
kelainan pada pigmen yaitu kekurangan jumlah semua jenis pigmen sehingga
warnanya cenderung putih bukan kekuningan seperti albino.
Leucistic parsial- (Mosaic)
Ketika leucistic hanya terjadi pada beberapa bagian kulit (atau bulu)
saja, maka disebut sebagai pied, atau dalam dunia SG disebut juga sebagai
Mosaic
.........................
Leucistic
Memiliki bulu
berwarna putih yang solid tanpa garis di tubuh dan di telinganya. Leucitic
memiliki mata berwarna hitam. Sugar Glider jenis ini merupakan Sugar Glider
dengan gen resesif sehingga harus dipasangkan dengan Sugar Glider lain dengan
gen resesif yang sama agar dapat mereproduksi leucistic.
..............................
White (also called Leucistic)
Commonly known as leucistic, the phenotype is d/d, non-melanoid, non-albino and non-axanthic. Here's a picture of a large adult female. Notice the black eyes and small number of melanophores on the head and back which indicate that it is not an albino. White axolotls with black eyes are not albino. While d/d prevents the axolotl's pigment cells from migrating off the top of the animal, this does not necessarily mean that all leucistics will possess colour cells on the the head and back - look at the eyes to be certain. Putih (juga disebut Leucistic)
Umumnya dikenal sebagai leucistic/leucistik/leucism , fenotipe adalah d / d, non-melanoid, non-albino dan non-Axanthic. Berikut adalah gambar dari betina dewasa besar. Perhatikan mata hitam dan sejumlah kecil melanophores di kepala dan belakang yang menunjukkan bahwa itu bukan albino. axolotl putih dengan mata hitam tidak albino. Sementara d / d mencegah sel-sel pigmen axolotl ini dari migrasi dari atas binatang, ini tidak berarti bahwa semua leucistics akan memiliki sel-sel warna pada kepala dan punggung - melihat mata menjadi penemtu.
.................................
WHITE LION GENETICSWhite lions are not albino (unpigmented) but are leucistic - leucism describes an effect rather than a particular gene. They have pigmentation which is visible in the eyes, paw pads and lips. Their eyes are usually the normal hazel or golden colour although some have blue, blue-green or greyish-green eyes. At birth, the cubs are snowy white and may be described as resembling polar bear cubs. The birth colour gradually darkens to a pale cream colour known as blond (another name for white lions is blond lions). The mane and tail tuft remain a paler shade. singa putih tidak albino (tidak berpigmen) tetapi leucistic/leucistik - leucism menggambarkan efek daripada gen tertentu. Mereka memiliki pigmentasi yang terlihat di mata, bantalan kaki dan bibir. Mata mereka biasanya cokelat normal atau warna emas meskipun beberapa memiliki biru, mata biru-hijau atau hujau-keabu. Saat lahir, anaknya yang bersalju putih dan dapat digambarkan sebagai menyerupai anak beruang kutub. Warna lahir secara bertahap menggelap menjadi warna cream pucat dikenal sebagai pirang (nama lain untuk singa putih singa pirang). Surai dan ekor seberkas tetap berwarna pucat.
.........................
Leucism is a complete or partial lack of melanin in the feathers, but not necessarily the soft tissues. It is sometimes referred to as ‘partial albanism’ but if you’re familiar with the definition of albanism (which hopefully you are now!) you know the term ‘partial albinism’ is oxymoronic. Leusistic birds can have one or multiple white feathers, as is the case with my friend in Bellevue, or be completely white but with regularly colored eyes. Their feet and bills may or may not appear pink like that of an albino bird’s. Leucism/leucistic/leucistik adalah kurangnya lengkap atau sebagian dari melanin dalam bulu, tetapi belum tentu di jaringan lunak. Hal ini kadang-kadang disebut sebagai 'albanism parsial' tetapi jika Anda terbiasa dengan definisi albanism , Anda tahu istilah 'albinisme parsial' adalah oxymoronic. burung Leusistic dapat memiliki satu atau beberapa bulu putih, seperti halnya dengan teman saya di Bellevue, atau benar-benar putih tapi dengan mata berwarna teratur. kaki dan bills mereka mungkin atau tidak mungkin muncul merah muda seperti pada burung albino ..
...............................
Leucism kerap
disalahpahami sebagai albinism. Contohnya, ada katak yang memiliki jenis pigmen
xanthophores (jenis pigmen selain melanin), maka warnanya tidak putih polos,
melainkan kuning pucat.
Last but not
least, hewan al;bino di muka bumi tergolong sangat langka. Sebuah studi di
universitas Wisconsin, memperkirakan mutasi albino muncul satu dalam setiap
42.500 kelahiran!
........................
Leucism sering
keliru dengan albino, padahal keduanya adalah kondisi yang
berbeda. Kedua kondisi ini tidak dikategorikan "tidak normal"
karena perbedaan tersebut adalah bukti keragaman hayati. Tidak ada istilah
normal atau tidak, yang ada hanya keragaman hayati.
........................
3. Leucism
Leucism adalah salah satu
peristiwa / kasus yang menyebabkan timbulnya warna pada Love Bird pied (
Blorok) . Leucism merupakan peristiwa rusak atau hilangnya melanoblast yang di
bentuk di Puncak syaraf sehingga berakibat melanosit hampir sepenuhnya tidak
ada pada bulu . Ketika melanosit absen di bagian bulu maka tidaklah mungkin
pigmen disetorkan di daerah tersebut. Jadi Leucism bukan di sebabkan oleh
kesalahan aktivitas pada enzim tyrosinase atau deposit eumelanin hitam.
..........................
Why is this humpback all white? Willow has a condition called leucism, which causes a reduction in all skin pigments. How is leucism different from albinism you may ask? Albinism only effects the production of melanin, while leucism prevents formation of all pigments. disebut leucism/leucistic/leucistik , yang menyebabkan pengurangan semua pigmen kulit. Bagaimana leucism berbeda dari albinisme Anda mungkin bertanya? Albinisme hanya efek produksi melanin, sementara leucism mencegah pembentukan semua pigmen.
.............................
What is Leucism?
It is similar and often confused with Albinism, but the difference between the two is that in Albinism there is a defect in the production and distribution of melanin (affects entire animal); while in Leucism there is only a reduction in skin, hair or feather pigment in the process of development (normally only affects patches of the animal).
One key difference is that when an animal is Albino it has red eyes, while with Leucism it doesn't
Apa leucism/leucistic/leucistik ? Hal ini mirip dan sering membingungkan dengan Albinisme, tetapi perbedaan antara keduanya adalah bahwa di Albinisme ada cacat dalam produksi dan distribusi melanin (mempengaruhi seluruh hewan); sementara di leucism hanya ada pengurangan di kulit, rambut atau pigmen bulu dalam proses pembangunan (biasanya hanya mempengaruhi patch dari hewan). Salah satu perbedaan utama adalah bahwa ketika hewan adalah albino akan memiliki mata merah, sementara dengan leucism itu tidak
It is similar and often confused with Albinism, but the difference between the two is that in Albinism there is a defect in the production and distribution of melanin (affects entire animal); while in Leucism there is only a reduction in skin, hair or feather pigment in the process of development (normally only affects patches of the animal).
One key difference is that when an animal is Albino it has red eyes, while with Leucism it doesn't
Apa leucism/leucistic/leucistik ? Hal ini mirip dan sering membingungkan dengan Albinisme, tetapi perbedaan antara keduanya adalah bahwa di Albinisme ada cacat dalam produksi dan distribusi melanin (mempengaruhi seluruh hewan); sementara di leucism hanya ada pengurangan di kulit, rambut atau pigmen bulu dalam proses pembangunan (biasanya hanya mempengaruhi patch dari hewan). Salah satu perbedaan utama adalah bahwa ketika hewan adalah albino akan memiliki mata merah, sementara dengan leucism itu tidak
What is the Endosymbiotic theory of an Leucistic Alliagtor? All of the Leucistic Alligator's cells have evolved from Prokaryotes (cells with no nucleus) to Eukaryotes (cells with nucleus') and then specifically from there to Aerobic Eukaryotes (ones that require oxygen). Apa teori endosimbiotik dari Leucistic Alliagtor?
Semua sel-sel Leucistic/leucistik/leucism
Alligator ini telah berevolusi dari
Prokariota (sel tanpa inti) ke Eukariota (sel dengan nukleus ') dan kemudian
secara khusus dari sana ke Aerobic Eukariota (yang membutuhkan oksigen).
..............................
Melanin is the main pigment found in mammals. It
is responsible for the color of hair and fur. There are different types of melanin (eumelanin and
pheomelanin), and they produce a huge color range, from black to sandy to red.
Melanin adalah pigmen utama yang ditemukan pada mamalia. Hal ini bertanggung jawab untuk warna rambut dan bulu. Ada berbagai jenis melanin (eumelanin dan pheomelanin), dan mereka memproduksi berbagai warna besar, dari hitam ke berpasir merah.
Melanin adalah pigmen utama yang ditemukan pada mamalia. Hal ini bertanggung jawab untuk warna rambut dan bulu. Ada berbagai jenis melanin (eumelanin dan pheomelanin), dan mereka memproduksi berbagai warna besar, dari hitam ke berpasir merah.
. Leucism is sometimes mistaken for albinism, but leucism is a condition characterized by reduced pigmentation in animals. It affects all pigments, not just melanin, and animals with leucism have normal eye color, while animals with albinism tend to have red eyes. Leucism/leucistic/leucistik kadang-kadang keliru untuk albinisme, tetapi leucism adalah suatu kondisi yang ditandai oleh berkurangnya pigmentasi pada hewan. Ini mempengaruhi semua pigmen, bukan hanya melanin, dan hewan dengan leucism memiliki warna mata normal, sedangkan hewan dengan albinisme cenderung memiliki mata merah.
...............................
.......................
White Tigers are NOT
Genetically Defective
There is no evidence of a genetic defect inherent in the white color variant of the Royal White Bengal Tiger, notwithstanding the erroneous claims to the contrary by the Humane Society of the United States (HSUS) and the Association of Zoos and Aquariums (AZA). White tigers have a normally occurring, simple recessive genetic color variant known as leucism, much the same as the leucistic (white) deer common to the Carolinas. Leucism and albinism are not the same. White tigers are not albinos and do not carry the genetic weaknesses associated with albinism. According to a recent study published in Current Biology, the gene known as SLC45A2, is a naturally expressed color variant that was common in wild tiger populations prior to extirpation by poachers, hunters and habitat fragmentation in the 1950’s.
There is no evidence of a genetic defect inherent in the white color variant of the Royal White Bengal Tiger, notwithstanding the erroneous claims to the contrary by the Humane Society of the United States (HSUS) and the Association of Zoos and Aquariums (AZA). White tigers have a normally occurring, simple recessive genetic color variant known as leucism, much the same as the leucistic (white) deer common to the Carolinas. Leucism and albinism are not the same. White tigers are not albinos and do not carry the genetic weaknesses associated with albinism. According to a recent study published in Current Biology, the gene known as SLC45A2, is a naturally expressed color variant that was common in wild tiger populations prior to extirpation by poachers, hunters and habitat fragmentation in the 1950’s.
White Bengals result from genetic
mutations that are part of their natural species diversity, and we have a responsibility
to save them”– Shu-Jin Luo and Xiao Xu, Scientific American, 2014.
Leucism, as a simple
recessive genetic trait, can be carried by normal (orange) tigers, even though the white
color is not visibly exhibited. In humans, Type O blood is a simple recessive
trait. This means that in order for a person to have the phenotype for
Type O blood, he or she must inherit one Type O gene from each parent. A
phenotype is an individual’s observable traits, such as height, eye color, and
blood type. The genetic contribution to the phenotype is called the genotype
(the genetic ingredients that an animal has, whether or not those traits are
visible).
The white gene can be inherited undetected in orange tigers
for generations, because a tiger only appears white when each parent in any
particular breeding passes the gene for leucism. When two normal colored tigers
are bred carrying the recessive leucistic gene, white offspring can occur. The
spontaneous occurrence of white tigers in the U.S. population proves that the
gene for leucism is widespread in the species.
An animal is heterozygous
at a gene locus when it contains two different alleles of a gene. Many orange
tigers are heterozygous for leucism, meaning that they carry a dominant gene
for the orange color as well as a recessive gene for white. These cats
have one of each gene to potentially contribute to offspring, with an equal
chance of passing the orange gene or the white gene. When an orange
tiger carrying the white gene mates with a white tiger, each of the offspring
has a 50% chance of of being white and 100% of the offspring will carry
the white gene. If two heterozygous tigers (orange tigers each carrying the
recessive white gene and a dominant orange gene) mate, each offspring
has a 25% chance of being white; each has a 50% chance of
being orange but carrying the white gene, and each has only a 25%
chance of being orange and not carrying
the white gene. Two visually white tigers bred together will produce only
white cubs.
At the Rare Species Fund in Myrtle Beach, we have dedicated
ourselves to producing some of the most magnificent and healthy Royal White
Bengal Tigers the world has ever seen. The genetic diversity of our breeding
stock, combined with hand rearing, good citizen training and unparalleled
enrichment opportunities, have enabled us to produce animals of incomparable
grace, beauty and genetic vigor.
Genetics or Inbreeding?
William Conway, former director of the Bronx Zoo’s New York Zoological Society, a/k/a Wildlife Conservation Society (WCS), was convinced that white tigers were the victims of a hereditary genetic defect that was isolated and propagated for sideshow exhibits. He actually compared white tigers to “two headed calves.” The comparisons would later be made ad nauseam by the AZA and surrogates for HSUS attempting to set public opinion against white tigers.
William Conway, former director of the Bronx Zoo’s New York Zoological Society, a/k/a Wildlife Conservation Society (WCS), was convinced that white tigers were the victims of a hereditary genetic defect that was isolated and propagated for sideshow exhibits. He actually compared white tigers to “two headed calves.” The comparisons would later be made ad nauseam by the AZA and surrogates for HSUS attempting to set public opinion against white tigers.
White tigers are freaks”– William
Conway, Director of the New York Zoological Society (a/k/a WCS).
This flawed argument was formally adopted by the AZA,
and focuses on claiming a genetic defect in the white color variant, yet
AZA provides no direct examples nor evidence to support the claim; all the
while, contradictorily conceding that defects are actually the result of “poor
breeding practices.”
Conway’s views held great
appeal for animal rights advocates who already considered all animal breeding as “exploitation.” The AZA,
one of two trade associations that accredits zoos in the U.S., adopted a policy
banning all white tiger breeding in a white
paper published in 2011. The
irony is, AZA accredited zoos actually pioneered white tiger breeding in the
U.S. during the 1960’s and 70’s.
Conway’s apparently limited understanding of white tiger
genetics appears to be responsible for his failure to comprehend that
the white allele was a naturally occurring simple recessive genetic trait
carried by many healthy, normal-appearing Bengal tigers, and at one time
was visibly expressed in a healthy wild white population. The trait is not only
perfectly normal, but the genetic material catalogued within the DNA
“fingerprint” of white tigers is reported to be comparable in diversity to
that contained in the orange population.
Notwithstanding, the AZA states that the white gene, “has
been clearly linked with various abnormal, debilitating, and, at times, lethal,
external and internal conditions and characteristics.” But what they fail to
do, is cite any evidence connecting “abnormal” or “debilitating”
mutations to anything other than problems more closely related to
“breeding practices” than any manifestation of genetic deformities.
Science over Superstition
The best available sciencerecommends saving and strengthening the diversity in the white Bengal tiger, leaving the AZA “no breeding” policy in stark contradiction with the welfare of the species. The facts are simple. The recessive white gene SLC45A2, in and of itself, is not flawed. For example, the gene that makes black leopards black, is also a simple recessive, and AZA zoos do not ban black leopard breeding. The change in policy at AZA seems more correlated to what appears to be an informal alignment with the Humane Society of the United States (HSUS), to protect AZA market share from non-AZA zoos. The policy to ban the breeding of white tigers is an ideological choice, unrelated to science.
The best available sciencerecommends saving and strengthening the diversity in the white Bengal tiger, leaving the AZA “no breeding” policy in stark contradiction with the welfare of the species. The facts are simple. The recessive white gene SLC45A2, in and of itself, is not flawed. For example, the gene that makes black leopards black, is also a simple recessive, and AZA zoos do not ban black leopard breeding. The change in policy at AZA seems more correlated to what appears to be an informal alignment with the Humane Society of the United States (HSUS), to protect AZA market share from non-AZA zoos. The policy to ban the breeding of white tigers is an ideological choice, unrelated to science.
Much of the misinformation
surrounding white tigers has been proliferated by Carole Baskins of Big Cat
Rescue. She has posted her HSUS inspired interpretation of the AZA white paper,
along with William Conway’s views, on her website, which in turn has been
republished by The Dodo and One Green Planet, and
punctuated with horrible photos of inbred tigers. It is worthy
of note that Ms. Baskins uses no scientific citations to support
her claims of genetic defect. She uses inflammatory rhetoric and shocking
images in lieu of facts.
While the original confusion
regarding white tiger genetics understandably stemmed from personal
opinions derived from a poverty of scientific data, the current anti-white
tiger sentiment of AZA/HSUS flies in the face of the best
available science. The AZA appears to have aligned themselves with HSUS not
only to protect themselves from being targeted by the animal rights industry,
but to discredit other legitimate zoological institutions that don’t toe the
HSUS/AZA line on captive wildlife policy. It should be interesting to see, as
more science becomes available dispelling superstitions about white tiger
genetics, if AZA will defy HSUS and adopt a science based policy?
According to Dr. Brian Davis of
the Exotic Genome Repository, “There has been no genetic
study that has demonstrated a negative biological effect connected to the
white variant in tigers. When the white tiger existed in the wild prior to
human eradication, adults were common, indicating no decrease in fitness.”
Additionally, leucism exists in numerous other species. These traits, erroneously associated
with white, are actually strongly linked with inbreeding, regardless of coat
color. Contemporary American tiger populations do not need inbreeding to
perpetuate the white variant, since the gene is prevalent within the orange
population as well other genetic variation that humans have driven extinct
in the wild.
There has been no genetic study that has
demonstrated a negative biological effect conferred by the white variant in
tigers.”– Brian W. Davis, Ph.D., Comparative Genomicist, Exotic Genome
Repository
Royal White Bengal Tigers are Magnificent!
Anyone who is interested in seeing what healthy, happy white tigers actually look like, feel free to visit my facility in Myrtle Beach, South Carolina. Our state-of-the-art facility is home to a number of the most fantastic white tigers on the planet today. We didn’t give up on the white tiger. To the contrary, our breeding and enrichment programs are superior to any other zoological facility in the world. Come see white tigers run at full speed through varied terrain. There is not an experience that can compare to seeing these powerful animals do what they were born to do. If you can’t visit in person, watch the video below. Capturing the imagination of millions, the Royal White Bengal Tiger is undeniable in its power as an animal ambassador for conservation, and is a portrait of genetic vigor!
Anyone who is interested in seeing what healthy, happy white tigers actually look like, feel free to visit my facility in Myrtle Beach, South Carolina. Our state-of-the-art facility is home to a number of the most fantastic white tigers on the planet today. We didn’t give up on the white tiger. To the contrary, our breeding and enrichment programs are superior to any other zoological facility in the world. Come see white tigers run at full speed through varied terrain. There is not an experience that can compare to seeing these powerful animals do what they were born to do. If you can’t visit in person, watch the video below. Capturing the imagination of millions, the Royal White Bengal Tiger is undeniable in its power as an animal ambassador for conservation, and is a portrait of genetic vigor!
.............................
Super Snakes, Super Confusing
Using
the BEL complex in ball pythons, Kassandra breaks down what a "super"
morph is using basic genetics terminology and a little common sense.
Super confusing
If you spend any amount of time around the morph reptile hobby, you’ll hear terms like co-dom, super and het tossed about. For the most part, these terms have served their purpose, although they are often confusing, and in some cases, just plain wrong.
Let’s start at the beginning, because that is where it all starts going wrong.
You do not have to understand what DNA is or what it is made of or how it “works” to wrap your head around genetic inheritance. The ball python genome has not yet been mapped. All that we know of ball python color and pattern morphology has been learned by observing the results of breeding trials, just as Gregor Mendel did with his peas centuries ago.
All you need to know is that the gene that encodes any trait consists of a pair of alleles inherited from the parents - one allele from the father, and one from the mother.
In python breeding, we do not use the word allele enough. If you don’t understand what an allele is, you will never be able to understand how they can affect your breeding projects. An allele is any mutant that “fits” into one of the pairs of a gene for a specific trait. All alleles are genes, but not all genes are alleles.
Clown, for example, has two known alleles that may exist at the “clown” locus.-
1. The “mutant” Clown allele
2. The normal (wild type) allele
Things get a little more complicated when you consider the Mojave locus, because numerous alleles have been found to exist in this “complex”
1. Mojave
2. Lesser/butter
3. Phantom/Mystic
4. Mocha
5. Russo
6. Special
The most important thing to remember when encountering a gene with multiple alleles is that any one animal can have a maximum of TWO of each of those. Imagine a game of musical chairs, where there are many players (alleles), but only two empty seats left (the gene pair of a specific locus). For example- You can breed a lesser mojave BEL to an Invisiball, but you could never create a Mystic Mojave Russo because there are only two “empty seats” at each locus.
http://www.royerreptiles.com/blog/files/e5ab615f4054197f95ace2094dec0d53-1.html
If you spend any amount of time around the morph reptile hobby, you’ll hear terms like co-dom, super and het tossed about. For the most part, these terms have served their purpose, although they are often confusing, and in some cases, just plain wrong.
Let’s start at the beginning, because that is where it all starts going wrong.
You do not have to understand what DNA is or what it is made of or how it “works” to wrap your head around genetic inheritance. The ball python genome has not yet been mapped. All that we know of ball python color and pattern morphology has been learned by observing the results of breeding trials, just as Gregor Mendel did with his peas centuries ago.
All you need to know is that the gene that encodes any trait consists of a pair of alleles inherited from the parents - one allele from the father, and one from the mother.
In python breeding, we do not use the word allele enough. If you don’t understand what an allele is, you will never be able to understand how they can affect your breeding projects. An allele is any mutant that “fits” into one of the pairs of a gene for a specific trait. All alleles are genes, but not all genes are alleles.
Clown, for example, has two known alleles that may exist at the “clown” locus.-
1. The “mutant” Clown allele
2. The normal (wild type) allele
Things get a little more complicated when you consider the Mojave locus, because numerous alleles have been found to exist in this “complex”
1. Mojave
2. Lesser/butter
3. Phantom/Mystic
4. Mocha
5. Russo
6. Special
The most important thing to remember when encountering a gene with multiple alleles is that any one animal can have a maximum of TWO of each of those. Imagine a game of musical chairs, where there are many players (alleles), but only two empty seats left (the gene pair of a specific locus). For example- You can breed a lesser mojave BEL to an Invisiball, but you could never create a Mystic Mojave Russo because there are only two “empty seats” at each locus.
http://www.royerreptiles.com/blog/files/e5ab615f4054197f95ace2094dec0d53-1.html
.......................
* BEL= Blue Eyed Leucistic or "Blue Eyed Lucy"
Regardless of which allele combination we are talking about, one thing is true-ALL of the combinations in the chart above are Supers. A “Super” is an animal that cannot produce a normal. However, a Super is NOT necessarily homozygous for a trait.
The term “het” is short for heterozygous . Heterozygous animals have different alleles present at a given locus. Homozygous animals have a pair of the SAME alleles at a given locus.
So how is the industry getting this wrong?
First, the implication is that the term “het” is only applicable to recessive traits, such as albino or piebald - genes that look normal unless there are two copies present at a gene locus. A het albino would have one albino allele, and one “normal” allele at the gene locus for the albino trait. A homozygous albino would have two albino alleles, one from each parent.
An incomplete dominant trait, such as pastel - can also exist in heterozygous and homozygous forms. Colloquially, we refer to a homozygous pastel as a Super Pastel. In this case, the animal is indeed both a super (cannot produce a normal looking snake) and homozygous (has two copies of the same allele at one locus)
In the case of a gene locus with a multiple allele “complex”, like the Mojave chart above, it is possible for a “super” to exist, but for the animal to actually be heterozygous for two different traits. Remember- het simply means the alleles at the locus are NOT THE SAME. A “Karma’ blue eyed lucy is het for both Mojave and Phantom. Because those two mutations are complimentary alleles, they can “mate up” and form a new “Super”. The resulting blue eye luecistic (BEL)
How do we know these are all different alleles and not just different names for the same thing? Well, in some cases we don’t - lesser and butter, for example. All evidence suggests lesser and butter are two lines of the same trait. They look virtually identical to each other in heterozygous and homozygous form and they combine with other traits to produce identical results.
However, in most cases, the homozygous forms differ, even if only slightly. A homozygous Mojave, for example, is a BEL with a purple-grey head, while a homozygous Butter is completely white. A latte is white with a yellow dorsal stripe, while a crystal is a white snake with a multi-tonal yellow & purple-grey pattern.
It is also true that some of the combinations produce indistinguishable plain blue-eyed white leucistics, but the “component” alleles are all easily distinguished from one another - a Lesser is different from a Russo, though they make a BEL in both their combination and homozygous super forms.
Looking at it from yet another angle, Purple passion (a Mojave x Phantom Super) and the homozygous Phantom look very much alike. However, when bred to normal, the Purple passion will produce mojaves and phantoms, where the homozygous phantom will produce only phantoms.
Hope y'all are finding these blog post interesting and informative. Next time I'll talk about recessive traits with multiple allele combinations.
...............................
Putih
Tak Selamanya Albino
by: Andi Nursaiful for HFG-Friends
Kerap ada kesalahkaprahan pengetahuan yang menganggap hewan putih, terutama
putih polos, sebagai albino. Sebaiknya, ada pula hewan yg tidak putih polos,
sesungguhnya adalah albino.
Contoh paling gampang di dunia perhamsteran. Putih polos mata merah,
belum tentu albino. sebab bisa saja dia REW (Red Eyed White).
Tapi sebelum membahas kembali soal albino versus REW, berikut
penyebab dan asal muasalnya, sebaiknya kita singgung sedikit soal
"penampakan" putih pada makhluk hidup lain, termasuk makhluk hidup
paling sukses di atas planet bumi: Manusia.
Makhluk hidup berpenampakan putih tak selamanya Albino. Sebab
dikenal juga istilah ilmiah yg disebut Isabellenism dan Leucism.
Albinism atau gampangnya aja albino, adalah proses mutasi dari warna asli
ke warna putih polos bermata merah (beberapa spesies tidak bermata merah).
Albinisme ini disebabkan oleh mutasi genetik yang menghambat produksi
pigmen melanin pada kadar normalnya. Karena ini mutasi, maka bisa diturunkan.
Atau dengan kata lain, tercipta varian warna baru dari spesies itu.
Ada mutasi yang alami, atau terjadi di alam (Hamster
misalnya), dan ada mutasi yang tidak disengaja dan terjadi dalam penangkaran,
yaitu breeding secara progresif kelinci-kelinci berwarna cerah dan akhirnya muncul
varian kelinci albino.
Hewan albino lebih sering bermata merah. Kecuali pada manusia
albino, jarang sekali bermata merah. Dengan kata lain Albino umumnya bermata
merah, sehingga kalo ada makhluk putih tapi tdk bermata merah, bisa jadi bukan
albinoi.
Lalu apa? Kalo bukan albino, kemungkinannya adalah Isabellenism atau
bisa juga Leucism.
Isabelline sejatinya adalah istilah warna yang bisa diartikan
sebagai warna pale grey-yellow, pale fawn, pale cream-brown atau parchment.
Umumnya dikenal di hewan jenis burung dan kuda.
Contohnya adalah pinguin chinstrap pirang yang ditemukan di
Kepulauan Shetland Selatan, Antartika.Pinguin ini mengalami isabelinisme.
Berbeda dengan pinguin chinstrap umumnya yang bagian belakangnya warna gelap,
pinguin ini bagian belakangnya kuning kecoklatan atau coklat pucat.
Menurut pakar pinguin dari Universitas Washington, Seattle, P. Dee
Boersma, penyebab pirangnya warna pinguin itu adalah kelainan genetik yang
disebut isabellinisme. Ini adalah kondisi pengurangan pigmen. JAdi cuma
berkurang, gak sampai kehiloangan pigmen melanin.
Lain pula yang disebut dengan leucism. Jika pada albino, pigmen melanin
tidak bisa diproduksi di seluruh tubuh, Sementara pada isabelinisme, pigmen
melanin berkurang, maka pada Leucism, terjadi pengurangan semua jenis pigmen
kulit, bukan hanya pigmen melanin.
Leucism kerap
disalahpahami sebagai albinism. Contohnya, ada katak yang memiliki jenis pigmen
xanthophores (jenis pigmen selain melanin), maka warnanya tidak putih polos,
melainkan kuning pucat.
Selain itu, perbedaan tegas antara albinism dan leucism adalah warna
mata. Kalo albino umumnya mata merah, maka leucism umumnya bermata normal, non
merah, atau warna matanya tidak terpengaruh.
Ada bentuk lain lagi dari Leucism. Yaitu yang disebut localized atau
incomplete hypopigmentation, atau dikenal secara umum dengan istilah
"pied" atau mengalami "piebald effect" atau bisa jg disebut
"piebaldism".
Hewan yang mengalami efek ini (partial Leucism), memiliki warna yg
berbeda dengan sesamanya. Yg ini memiliki bercak putih yang tidak teratur.
Contohnya, merpati yg bercak putih, dan ...... roborovski piebald (mottled
robo)!
Ada pula bentuk lain lagi dari leucism, yang disebut Chinchilla. Yg
ini menyebabkan penyebaran pigmen di kulit/bulu secara teratur. Contohnya
adalah white tiger.
Jadi, om Opal, hewan putih polos, tidak selamanya albino. Buaya putih,
harimau putih, pinguin putih, termasuk robo platinum yang bermutasi jadi putih
polos, belum tentu albino, karena bisa jadi mengalami leucism. Dan semua itu
adalah hasil mutasi!
Bahkan, masih banyak penampakan putih atau memutih dari beberapa hewan liar
di alam sebagai hasil mutasi, namun dipastikan bukan albino. Seperti white
peacocks, White Lizard, White Whale, dll.
Justru, sebaliknya, beberapa hewan yang tidak berpenampakan putih
polos namun bermata merah, adalah albino. Contohnya adalah corn snake.
Normalnya adalah belang hitam, merah, dan kuning. KAlo jenis albinonya, menjadi
putih, merah, dan kuning, sementara matanya berubah jadi merah.
Spesies reptil dan ampibi yang kena albinism, umumnya tidak menjadi
putih polos. KArena, reptil dan appibi memiliki tiga jenis sel pigmen (atau
chromataphores), yaitu melanophores, xanthophores, iridophores.
Last but not
least, hewan al;bino di muka bumi tergolong sangat langka. Sebuah studi di
universitas Wisconsin, memperkirakan mutasi albino muncul satu dalam setiap
42.500 kelahiran!
Sekarang kembali ke soal hamster.....
Hmmm, keknya dah lelah bahas hamster, abis komunitasnya ribut
mulu...! Jadi kehabisan waktu untuk memperdalam pengetahuan....
Tapi satu hal yang pasti, hamster albino itu sangat mungkin sudah
punah. Mutasi yang sudah tercipta dengan sempurna di alam, kini hilang karena
manusia seenaknya menyilang gen.
Kalo mau mencetak albino, mungkin perlu ambil acak sepasang hamster
putih polos mata merah, lalu dibreed, dan tunggu hingga 42.500 kelahiran!
....................
Hewan putih belum tentu albino, bisa jadi leucism
27 February 2015 kategori Artikel
Penulis: BW
Admin
Dibaca: 433
Kali
Albino adalah kondisi
melanin tidak ada pada suatu organisme. Melanin berfungsi memberikan warna
pada kulit, bulu rambut, dan mata. Sehingga tidak adanya melanin membuat seekor
hewan berwarna putih atau pucat. Namun jangan salah membedakan albino dan
leucism.
Albatros muda dalam foto di atas memiliki bulu yang
putih sekluruh badan, berbeda dengan albatros muda lainnya yang memiliki warna
abu-abu sebagian. Namun jika dilihat lebih detail ternyata mata burung muda itu
tidak berwarna putih, kondisi tersebut menunjukan albatros muda itu tidak
albino melainkan leucism. Leucism adalah hilangnya sebagian pigmentasi, yang
membuat hewan ini berwarna putih. Hilangnya pigmentasi pada leucism tidak
berpengaruh pada mata, seingga mata masih berwarna sesuai pigmennya.
Leucism sering
keliru dengan albino, padahal keduanya adalah kondisi yang
berbeda. Kedua kondisi ini tidak dikategorikan "tidak normal"
karena perbedaan tersebut adalah bukti keragaman hayati. Tidak ada istilah
normal atau tidak, yang ada hanya keragaman hayati.
.....................
Tentang Bulu - BAB III Semakin Penasaran
Dengan Pigmen
BAB III
Semakin
Penasaran Dengan Pigmen
Setelah membaca mekanisme yang terjadi pada sebuah bulu seekor burung
Lovebird maka dapat kita ketahui bahwa variasi warna ditentukan oleh komposisi pigmen
eumelanin Hutam, Pigmen Psittacin, Zona Spons dan Vakuola pada medulla. Nah
mari selanjutnya bahas tentang Pigmen, sebenarnya makanan apa sih pigmen
ini?
Apa yang ini ya ....!!!
Mari Kita bahas ...
SEMAKIN PENASARAN DENGAN PIGMEN
Ada sel-sel di kulit burung kita yang bertanggung jawab untuk produksi
eumelanin dan / atau phaeomelanin. Sel ini disebut melanosit atau sel pigmen.
Dalam melanosit atau sel pigmen, lebih tepatnya di endoplasmatic retikulum,
matriks ( bahan ) dari pigmen diproduksi. Ini matriks protein berwarna
terdiri dari setidaknya empat protein yang berbeda.
Kira kira beginilah gambar rntai kimia
Pigmen eumelanin
Proses perubahan matriks menjadi sel Pigmen berwarna melalui suatu
reaksi kimia yang di katalisator oleh enzim tertentu. Enzim adalah suatu zat
yang memiliki tugas tertentu, dan dalam hal ini harus mengaktifkan reaksi kimia
yang akan memberikan matriks warna hitam (sintesis pigmen). Dalam proses
Finishing pembuatan Pigmen Enzim yang berperan penting ini disebut
tyrosinase. Selama reaksi kimia ada dua kemungkinan hasil:
1.Eumelanin
Ketika proses berjalan sebagaimana mestinya maka butiran eumelanin hitam
alan diproduksi , dengan bantuan enzim myosine butiran eumelanin hitam akan di
salrukan ke seluruh bagian Barps melalui saluran dendrit.
2.Phaeomelanin
Jika selama proses transisi sistein enzim ke dopaquinone ( Mendapat
pengaruh reaksi dari luar melanocyt ( dari folikel bulu) berupa
penambahan enzim Cysteine) maka akan di hasilkan phaeomelanin.
Pada burung yang enzim tyrosinase terdiri dari 529 asam amino yang berbeda.
Setiap asam amino terdiri dalam pergantian 3 basis yang berbeda. Oleh karena
itu kita dapat menyimpulkan bahwa total 529 x 3 = 1.587 basis yang berbeda
bertanggung jawab untuk proses lengkap.
Sebuah sistem yang rumit, tetapi juga berarti bahwa kesalahan dapat terjadi
ketika duplikat DNA itu sendiri selama berbagai perkalian sel. Ketika terdapat sesuatu
yang salah pada salah satu basis ini selama pembuatan eumelanin Hitam
dengan bantuan enzim tyrosinase, kesalahan pada salah satu basis
tersebut di akibatkan oleh aktivitas tyrosinase akan menyimpang dari
normal, dan akibatnya terjadi penyimpangan dari kualitas eumelanin yang sedang
diproduksi. Selain kemungkinan di atas bisa saja basis selama pembuatan
eumelanin Hitam terbentuk sempurna tiada cacat tapi terjadi
penyimpangan pada saat proses "transportasi" oleh enzim
myosine, sehingga timbulkan suatu gangguan proses deposit / penyaluran
eumelanin Hitam ke barbs , sehingga akibatnya antara barbs satu dengan
yang lain memiliki kandungan eumelanin Hitam yang tidak
merata sehingga tampak lah suatu mutasi .
Mutasi Primer:
Kita bisa sub-membagi semua mutasi eumelanin menjadi tiga kategori utama:
1. Berbagai bentuk albinisme (pengurangan kualitatif) seperti fallows and
inos.
2. Pigment pengenceran (pengurangan kuantitatif) seperti dilute and edged.
3. Leucism, seperti pada burung recessive pied and dominant pied.
Mari kita jelaskan satu persatu
1. Albinisme atau pengurangan kualitatif :
Yang paling terkenal, sehingga jenis pertama yang kita pikirkan ketika kita
berbicara tentang mutasi eumelanin, adalah ino-bentuk. Dengan agapornis kami
memiliki beberapa ino-bentuk, yaitu:
1. Albinisme Sex-Linked (SL ino),
2. Albinisme Resesif (NSL ino, atau Non-Sex Linked
ino)
3. Fallows
Dalam albinisme resesif hampir tidak ada pembuatan pigmen. Hal ini
menyebabkan produksi matriks tidak berwarna sebenarnya matriks ini
kosong sehingga terkesan tidak berwarna , selanjutnya matriks
kosong ini di kirim ke bulu . peristiwa ini dosebut dengan
istilah "tirosinase albinisme negatif" (TYR-neg).
Proses ini juga terjadi pada warna Bonze Fallow (fallow
type 1), tetapi tidak sama persis dengan kasus
"tirosinase albinisme negatif" (TYR-neg). Pada kasus ini
aktivitas hormon tyrosinase berkuarang hanya sebagian
sehingga menghasilkan pigmen warna berkualitas rendah “
Dalam albinisme sex-linked kita menemukan matriks yang sangat tidak
sempurna dan bisa di katakan cacat. Aktivitas hormon
tyrosinase berjalan normal sebaliknya pada kasus inos SL ada
aktivitas tirosinase lebih tinggi 2,5 kali lipat dari burung
yang ada di alam . Pada kasus albinisme sex-linked memiliki
matrik yang terlalu kecil sehingga tidak ada efek yang di
timbulkan . Kasus ini dikenal dengan “albinisme tirosinase positif
(TYR-pos) “
Jadi dalam kedua kasus matriks melanosom diproduksi. Dalam NSL inos matriks
ini diproduksi dalam jumlah normal, tetapi mereka tidak berwarna atau hampir
sama sekali tidak berwarna . Dalam SL inos matriks sebenarnya hitam tetapi
cacat serius, terlalu kecil, dan terlalu sedikit. Jadi bulu tidak
"kosong", tetapi ada matriks berwarna, kecil dan / atau cacat hadir
dalam bulu. Tidak ada terlihat (bagi mata kita) produksi eumelanin dalam
bentuk paling ekstrim dari albinisme, namun, di bawah mikroskop elektron kita
memang bisa melihat kehadirannya.
Dalam pale fallow (tipe fallow 2) kami juga melihat penurunan kualitas matriks. Hal ini
menghasilkan pengurangan kualitas pigmen eumelanin.
Kemungkinan lain adalah, misalnya, situasi di
mana warna selama sintesis pigmen tidak akan berubah benar-benar hitam. Ini
adalah kasus di " cinnamon
". Dalam cinnamons kita melihat bahwa selama produksi eumelanin langkah
terakhir gagal. Hasil ini adalah bahwa produk akhir adalah eumelanin berwarna
coklat. Matriks memiliki bentuk normal, hanya warna eumelanin yang berbeda:
tidak berubah menjadi hitam. Jadi tidaklan benar bahwa warna
cinnamon adalah hasil dari phaeomelanin coklat. Cinnamon tidak ada hubungannya
dengan phaeomelanin, pada diagram rantai kimia yang ditampilkan pada
halaman sebelumnya dapat kita lihat bahwa kita berhadapan dengan dua proses
yang berbeda. Semua contoh kasus diatas kita bias di anggap sebagai
bentuk pengurangan pigmen kualitatif. Mutasi Albino (albinistic) sesuai dengan
alel mutan lokus yang terlibat dalam proses melanisation, termasuk metabolisme
dan pembangunan melanosomes. Pada mutasi albinistic mengalami
penuruanan jumlah deposit eumelanin ke jaringan tubuh
dan bulu. Meskipun beberapa dari mutasi ini memiliki mata gelap di masa
dewasa, mereka semua menunjukkan warna mata tereduksi pada menetas. Dengan kata lain: burung akan
kehilangan eumelanin di mata, kulit, kaki dan jari kaki, paruh, dan kuku serta
di Bulu . Meskipun beberapa dari mutasi ini memiliki mata hitam di masa dewasa,
namun pada saat menetas burung akan tetap menunjukkan warna
mata yang tereduksi ( tidak full hitam namun ada bintik merah ), seiring
berjalannya waktu semakin dewasa warna bintik merah akan
tak terlihat .
2.
Pigmen pengenceran atau pengurangan kuantitatif :
Istilah dilute bisa kita terjemahkan secara leterlek adalah cair, jadi
seakan-akan warna Lovebird tersebut mencair dari warna aslinya
Kasus pengurangan kuantitatif eumelanin disebabkan kerusakan distribusi
(transportasi) eumelanin . Gangguan distribusi eumelanin disebabkan oleh
eksistensi dendrit normal dan myosine.
Semua butiran eumelanin yang terbentuk secara
normal tidak semua berakhir di bulu karena beberapa sebab. Hal ini misalnya
terjadi pada burung edged and dilute. Salah satu sebab adalah
kesalahan selama pengangkutan butiran eumelanin (Normal) , ini menyebabkan
burung berwarna dilute. Pada Kasus dilute distribusi pigmen
eumelanin ke jaringan tubuh berlangsung normal
namun pada proses distribusi ke Bulu ada gangguan .
Gangguan tersebut berupa menempelnya beberapa butiran eumelanin
sehingga menyatu selanjutnya penyatuan beberapa butiran eumelanin
ini disebut dengan "melanosomes makro".
3. Leucism
Leucism adalah salah satu
peristiwa / kasus yang menyebabkan timbulnya warna pada Love Bird pied (
Blorok) . Leucism merupakan peristiwa rusak atau hilangnya melanoblast yang di
bentuk di Puncak syaraf sehingga berakibat melanosit hampir sepenuhnya tidak
ada pada bulu . Ketika melanosit absen di bagian bulu maka tidaklah mungkin
pigmen disetorkan di daerah tersebut. Jadi Leucism bukan di sebabkan oleh kesalahan
aktivitas pada enzim tyrosinase atau deposit eumelanin hitam.
Dalam Lovebird resesif pied (Blorok Resesif)
ada cacat dalam distribusi sel-sel pigmen dari puncak saraf, lokasi di mana
melanoblasts berasal. Akibatnya terlalu sedikit atau tidak ada melanosit tiba
di kulit. Enzim myosine dapat berfungsi secara normal, tetapi jika ada terlalu
sedikit atau tidak ada melanosit, adalah mustahil untuk deposit yang cukup
untuk memberikan pigmen warna bulu normal.
Pada Burung dominan pied ( Blorok Dominan ) ,
terdapat bagian kulit tertentu yang berubah secara genetik sedemikian rupa
sehingga melanosit tidak dapat bertahan di sana, atau bahkan mati. Di sini kita
dapat melihat bahwa di daerah bulu yang blorok (pied) sama sekali tidak ada
matriks disimpan dalam bulu. Peristiwa ini disebut amelanotic (pigmentless).
Pada daerah amelanotic (pigmentless) benar benar "kosong" sehingga
tidak ada matriks melanosom berwarna dapat ditemukan.
Kesimpulan
Dari beberapa Penjelasan di atas pada prinsipnya ada tiga jenis gangguan
dalam proses deposit eumelanin sehingga proses transpotasi eumelanin terganggu
. Adapun Gagguan Tersebut antara lain :
1.
Gangguan metabolisme hasil produksi eumelanin pada kasus albinisme.
2.
Gangguan pengangkutan butiran eumelanin ke poros bulu menyebabkan
pengenceran pigmen (pigment dilution).
3.
Gangguan mekanisme transportasi sel yang bertanggung jawab untuk hasil
produksi eumelanin di leucism.
Sampai di titik ini segalanya begitu jelas bahwa banyak kasus atau
peristiwa yang terjadi hanya berkaitan dengan produksi dan penyimpanan
eumelanin. Eumelanin dan phaeomelanin adalah dua hal yang sama sekali berbeda.
Seperti yang Anda lihat pada rantai kimia keduanya ada perbedaan besar antara
produksi phaeomelanin dan eumelanin. Berikut ini perbedaan phaeomelanin
dan eumelanin:
Eumelanin
Matriks berwarna terbentuk dalam endoplasmatic retikulum dari melanocyt
tersebut.
Kemudian enzim tyrosinase dijalankan sintesis pigmen. Avian tirosinase
terdiri dari 529 asam amino (1587 basa).
Tidak ada transisi, sintesis pigmen terus
Yang membentuk eumelanin berwarna hitam. Butiran berbentuk bulat, oval,
persegi panjang, atau bahkan berbentuk jarum.
Eumelanin dipengaruhi (bleached) dengan sinar matahari langsung.
Eumelanin tidak dapat dilarutkan dalam cairan alkali.
Phaeomelanin
Matriks berwarna terbentuk dalam endoplasmatic retikulum dari melanocyt
tersebut.
Kemudian enzim tyrosinase dijalankan sintesis pigmen. Avian tirosinase
terdiri dari 529 asam amino (1587 basa).
Sinyal genetik yang mengatur transisi (pada unggas dan kutilang) berasal
dari luar melanocyt (bulu folikel).
Terbentuk phaeomelanin memiliki warna merah-coklat dan bentuknya amorf.
Phaeomelanin tidak pemutih di bawah sinar matahari langsung.
Phaeomelanin dapat dilarutkan dalam cairan alkali.
Kebiasaan Umum
Hal umum yang terjadi di masyarakat ketika ada burung dengan warna
tertentu kadang di sebut dengan penamaan yang asal asalan padahal sesungguhnya
penamaan seekor burung lebih rumit dari yang kita bayangkan , penamaan
yang asal asalan tidak dapat diterima oleh metode ilmiah .Untuk menamakan suatu
mutasi warna seekor burng love bird secara spesifik wajib dilakukan pengamatan
pada eumelanin , kita harus menentukan apa sebenarnya yang terjadi pada
eumelanin yang di kombinasi kan dengan mengamati genotipe (latar belakang
genetik) serta Pedegree Sistem ( Sejarah Parental ). Hanya dengan cara ini kita
akan dapat menentukan nama yang benar dari mutasi. Banyak kesalahan
penyebutan mutasi karena tidak dilakukan pengamatan pada eumelanin dan
banyak yang terpengaruh masalah materi karena mutasi warna pada seekor burung
love bird tentu ada nilai financial nya .
Ada banyak nama ilmiah resmi tersedia, dan jika kita ingin hobi kita
dianggap serius, kita harus berternak dengan cara yang benar dan profesional.
Jika ada mutasi dalam proses produksi eumelanin, itu fenotip tampak seperti
"dikelantang" bulu, tetapi karena Anda telah memperhatikan, seluruh
proses ini sedikit lebih rumit dari itu. Untuk menentukan apa mutasi spesifik
itu kita melihat, kita harus menentukan apa sebenarnya yang terjadi pada
eumelanin, dalam kombinasi dengan genotipe (latar belakang genetik). Hanya
dengan cara ini kita akan dapat menentukan nama yang benar dari mutasi. Di masa
lalu itu terjadi terlalu sering bahwa orang-orang secara acak bernama mutasi
tertentu. Hal ini terjadi karena alasan kemiripan, atau karena nama itu hanya
menarik secara komersial. Ini benar-benar tidak dapat diterima!
Jangan lupa bahwa ada banyak nama ilmiah resmi tersedia, dan jika kita
ingin hobi kita dianggap serius, kita harus bertingkah laku dengan cara yang
benar dan profesional.
.........................................
Willow the (White) Whale
An all white humpback whale
was sighted off the coast of Norway earlier this week. It is believed that only
2 other “all white” humpbacks have been observed. British maritime
engineer Dan Fisher named this particular whale Willow the Whale.
Why is this humpback all white? Willow has a condition called leucism, which causes a reduction in all skin pigments. How is leucism different from albinism you may ask? Albinism only effects the production of melanin, while leucism prevents formation of all pigments. disebut leucism/leucistic/leucistik , yang menyebabkan pengurangan semua pigmen kulit. Bagaimana leucism berbeda dari albinisme Anda mungkin bertanya? Albinisme hanya efek produksi melanin, sementara leucism mencegah pembentukan semua pigmen.
Many are calling Willow Moby Dick’s doppelganger,
although Moby Dick was supposed to be a sperm whale.
So why are we so fascinated with albinism and leucism?
Many leucistic animals have been found, including
penguins, orcas, alligators, snakes, birds, axolotls and lions. I find
these animals interesting because they seem to be evolutionarily less
fit for their environment due to their stark white color. How does an all white
snake camouflage itself from a predator? I imagine this is less of an
issue for whales and lions. Some folk tales attribute magical powers to albino
animals, and there is even an urban myth about albino alligators in New York
sewers.
Why do you find
albino & leucistic animals interesting?
.............................................
Blanco the
Leucistic Alligator?
No
description
by
on 30 September 2014
Comments (0)
Transcript
of Blanco the Leucistic Alligator?
Blanco the Leucistic White Alligator? By: Kennedy Edwards, Da'Maya Rivers, and Isaiah Rhodes. What are Biomolecules? Biomolecules are organic molecules produced by a living thing, or in this case, Blanco the Leucistic Alligator. What Biomolecules are apart of Blanco? Proteins, Nucleic Acids, Carbohydrates and Lipids are all Biomolecules that are apart of Blanco and all living organisms. PROTEINS NUCEIC ACIDS CARBOHYDRATES Conclusion What is Leucism? It is similar and often confused with Albinism, but the difference between the two is that in Albinism there is a defect in the production and distribution of melanin (affects entire animal); while in Leucism there is only a reduction in skin, hair or feather pigment in the process of development (normally only affects patches of the animal). One key difference is that when an animal is Albino it has red eyes, while with Leucism it doesn't Apa leucism/leucistic/leucistik ? Hal ini mirip dan sering membingungkan dengan Albinisme, tetapi perbedaan antara keduanya adalah bahwa di Albinisme ada cacat dalam produksi dan distribusi melanin (mempengaruhi seluruh hewan); sementara di leucism hanya ada pengurangan di kulit, rambut atau pigmen bulu dalam proses pembangunan (biasanya hanya mempengaruhi patch dari hewan). Salah satu perbedaan utama adalah bahwa ketika hewan adalah albino akan memiliki mata merah, sementara dengan leucism itu tidak Where are the molecules found in Blanco? Proteins are found in the muscle and hemoglobin. Nucleic Acids are found in DNA and RNA. Carbohydrates are also in the muscles. Lipids live in the fats of the body. What is the Endosymbiotic theory of an Leucistic Alliagtor? All of the Leucistic Alligator's cells have evolved from Prokaryotes (cells with no nucleus) to Eukaryotes (cells with nucleus') and then specifically from there to Aerobic Eukaryotes (ones that require oxygen). Apa teori endosimbiotik dari Leucistic Alliagtor?
Semua sel-sel Leucistic/leucistik/leucism
Alligator ini telah berevolusi dari
Prokariota (sel tanpa inti) ke Eukariota (sel dengan nukleus ') dan kemudian
secara khusus dari sana ke Aerobic Eukariota (yang membutuhkan oksigen).
How are the molecules formed in Blanco?
Proteins: Through the combining of amino acids.
Nucleic Acids: By nucleotides linking together by the formation of phosphatester bonds
Carbohydrates: Through the combination of monosaccharides.
Lipids: Through the combinations of fatty acids.
Does being leucistic have an affect on Blanco's biomlecules?
NOPE!
How are the molecules used?
Proteins: Compose muscle, skin, and other body tissues. They are also enzymes (speed up chemical reactions).
Nucleic Acid: Store and transmit genetic information.
Carbohydrates: Provide energy for cells and tissues.
Lipids: They are the secondary energy source, but they also structure cell intake and waterproofing.
LIPIDS
Where do Leucistic Alligators fall in the fossil records?
All Alligators fall under the Mesozoic and Cenozoic era as Deinosuches.
How are atoms, elements, and molecules related to biomolecules; and how are they connected to living things?
Relation to atoms: Biomolecules are join atoms.
Relation to elements: Six common elements are consistantly found in biomolecules (Carbon, Hydrogen, Nitrogen, Oxygen, Phosphorus, and Sulfur).
Relation to living things: All living things are made up of atoms, elements, and molecules.
Blanco, like all other living things, is a complex organism, yet he beholds a special characteristic, Leucism.
.....................
Blue
frogs and white lions (biological pigments)
The plant
and animal kingdoms abound with bright colors, from the lush green of
photosynthesizing plants to the bold black and orange stripes of tigers. Color
plays a multitude of roles in the natural world, used to entice, to camouflage,
or to warn other creatures. Colors signal harvest time, breeding conditions,
and the change of seasons, from the first greens of spring to the brilliant
reds and browns of the fall.
Pigments
Pigments are
chemical compounds responsible for color in a range of living substances and in
the inorganic world. Pigments absorb some of the light they receive, and so
reflect only certain wavelengths of visible light. This makes them appear
"colorful.” Cave paintings by early man show the early use of pigments, in
a limited range from straw color to reddish brown and black. These colors
occurred naturally in charcoals, and in mineral oxides such as chalk and ochre.
The WebExhibit
on Pigments has more
information on these early painting palettes. Many early artists used natural
pigments, but nowadays they have been replaced by cheaper and less toxic
synthetic pigments.
Some
pigments have been categorized on this site in terms of the mechanism that
causes a particular wavelength or group of wavelengths to be reflected rather
than absorbed.
Ultramarine
or lazurite (found in the gemstone lapis lazuli) is colored by the charge transfer process. The
mechanism described by ligand theory causes the color of the pigment chrome
green. Cadmium sulphide owes its distinctive color to the mechanism
described by band gap theory. Lead compounds used to find widespread
applications in white and gray paints, but are now rarely used because of their
toxicity.
Pigments
color paint, ink, plastic, fabrics, cosmetics, food, and a wide range of products
we use and see all about us.
Biological pigments
Biological
pigments are pigments produced by living organisms. They can be found in many
plants, including flowers, and even
in our skin. Bacteria are colored by pigments. All biological pigments
selectively absorb certain wavelengths of light while reflecting others.
Color arises
from the way the pigments react with light.
Biological
pigments in plants
Plant
pigments exist in a wide variety of forms, some with highly complex and large
structures. Over 600 naturally occurring carotenoid structures have been
identified, as well as over 7,000 flavonoids, including over 500 anthocyanins.
This is discussed in more detail on the Flowers section. Biological
pigments such as chlorophyll are colored organic molecules which owe their
color to the presence of unsaturated bonds (e.g. C=C-C=C).
Biological
pigments in animals
Melanin is the main pigment found in mammals. It
is responsible for the color of hair and fur. There are different types of melanin (eumelanin
and pheomelanin), and they produce a huge color range, from black to sandy to
red.
Melanin adalah pigmen utama yang ditemukan pada mamalia. Hal ini bertanggung jawab untuk warna rambut dan bulu. Ada berbagai jenis melanin (eumelanin dan pheomelanin), dan mereka memproduksi berbagai warna besar, dari hitam ke berpasir merah.
Melanin adalah pigmen utama yang ditemukan pada mamalia. Hal ini bertanggung jawab untuk warna rambut dan bulu. Ada berbagai jenis melanin (eumelanin dan pheomelanin), dan mereka memproduksi berbagai warna besar, dari hitam ke berpasir merah.
Other ways that organisms create color
Fireflies
and bacteria emit light in the form of bioluminescence. Luciferins
are a class of light-emitting biological substance found in these organisms.
Although
animals do manufacture their own melanin, they can’t make many other pigments.
Plants, however, can produce a range of pigments, so many animals are colored by what they eat.
lamingos eat
planktonic animals such as brine shrimp. Both the flamingo and the shrimp are
unable to make their own carotenoids. Microscopic algae manufacture red and
yellow pigments, and form the primary diet of the tiny shrimp. When the
flamingo dines on shrimp, the carotenoids move another step through the food
chain to produce the vivid pink and oranges seen in the feathers. Most zoos supplement the
diet of their flamingos with plant pigment extracts: gray flamingos would lack
the visual appeal of the vivid colors we expect from these birds. Similarly, farmed salmonare fed a
supplement to make them a more appetizing pink.
Invertebrates,
such as insects or mollusks, often display green colors because of porphyrin
pigments sometimes absorbed through their diet.
Unlike
plants, most animals are unable to make green and blue pigments. Most of their
green and blue colors are created through structural effects. A bluebird
manufactures melanin and would look almost black, but tiny air sacs in the feathers
scatter light and make it appear blue, in a similar way to the sky, which
appears blue as gas
molecules in the atmosphere scatter
light. Peacocks are colored through a combination of pigments, and the way light
interferes when reflected off the feathers to create iridescence. Examples of colors
arising from iridescent and diffractive structures can be found in peacock
feathers, [15B.html|]pearls, and mother of pearl. Another brilliant
example of structural color in the animal kingdom is the brilliant blue of the
Morpho butterfly. The color
of their wings is the result of their microstructure, although many butterflies
have cells that contain pigment as well. Some beetles with a metallic green sheen show similarly
vibrant colors.
Structural
color is the result of selective reflection or iridescence, usually because of
multilayer structures. Pigment color differs from structural color in that it
is the same for all viewing angles. Some colors are a combination of pigment,
structural color, and diet. Most green colors in fish, reptiles, amphibians,
and birds are created by a reflection of blue light coming through an
over-layer of yellow pigment.
White
animals
White
animals are often found in nature and sometimes the cause is albinism. Melanin
is the primary pigment that determines the color of a mammal`s skin, fur, and
eyes. Albinism occurs in mammals (including humans), fish, birds, reptiles, and
amphibians. It is a hereditary condition; the principal gene which results in
albinism prevents the body from making the usual amounts of the pigment
melanin. An animal inherits either a single trait or set of traits that
interrupt melanin production.
Animals with
albinism are typically white or very pale. However, not all animals with
albinism are pure white; some traits that control melanin allow forms of the
pigment to appear in the fur of the animal.
The many types of melanin are responsible for brown, black, gray, and some yellow colorations.
In some animals, especially albinistic birds and reptiles, ruddy and yellow
hues or other colors may be present on the entire body or in patches (as is
common among pigeons), due to the presence of other pigments unaffected by
albinism such as porphyrins, pteridines, and psittacins, as well as carotenoid
pigments derived from the diet.
White peacocks and white lions are examples of animals that appear white, but do not have albinism. The color of white lions has been attributed to leucism. Leucism is sometimes mistaken for albinism, but leucism is a condition characterized by reduced pigmentation in animals. It affects all pigments, not just melanin, and animals with leucism have normal eye color, while animals with albinism tend to have red eyes. Leucism/leucistic/leucistik kadang-kadang keliru untuk albinisme, tetapi leucism adalah suatu kondisi yang ditandai oleh berkurangnya pigmentasi pada hewan. Ini mempengaruhi semua pigmen, bukan hanya melanin, dan hewan dengan leucism memiliki warna mata normal, sedangkan hewan dengan albinisme cenderung memiliki mata merah.
Big cats may
be white through albinism or leucism, but in a related variation they can be
black because they have melanism, an unusually high proportion of melanin. All
these conditions relate back to their genetic makeup. In black leopards and
jaguars with melanism, close examination will show that the markings are still
there, masked by the black coloration. Melanism is known to occur in other
species, but is common in cats.
Use of pigments for camouflage or defense
Pigmentation
is used by many animals for protection, by means of camouflage, mimicry, or
warning coloration. Pigments such as melanins in the skin may serve to protect tissues from
ultraviolet radiation. Pigments may also aid in sexual reproduction, by
identifying species and gender of animals to potential mates, or signaling
readiness to breed.
What do squid ink and your skin have in common?
Squid, octopi, and cuttlefish are
well-known for the jets of ink they squirt out in clouds at their attackers.
This dark cloud distracts and confuses their potential predators. Cephalopods
such as the octopus squirt ink composed primarily of concentrated melanin,
produced in an ink sac. To add to the effect of this defense, the ink can
contain among other things the chemical tyrosinase, a harmful compound that is
thought to diminish sense of smell and cause irritation.
While most octopi have ink sacs, some,
such as those that live the darkness of the deep sea, have reduced or absent
ink sacs.
The melanin in octopus ink is red, but may
appear brown or even black in high concentrations. Nocturnal and deep-sea
cephalopods only produce red or brown ink, but in reduced light it appears
black.
.........................